Copied to
clipboard

G = C2×C22.F5order 160 = 25·5

Direct product of C2 and C22.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C22.F5, C23.3F5, C102M4(2), Dic5.15C23, C5⋊C83C22, C53(C2×M4(2)), (C22×C10).6C4, C2.12(C22×F5), C22.20(C2×F5), C10.12(C22×C4), Dic5.19(C2×C4), (C2×Dic5).14C4, (C22×Dic5).9C2, (C2×Dic5).58C22, (C2×C5⋊C8)⋊5C2, (C2×C10).20(C2×C4), SmallGroup(160,211)

Series: Derived Chief Lower central Upper central

C1C10 — C2×C22.F5
C1C5C10Dic5C5⋊C8C2×C5⋊C8 — C2×C22.F5
C5C10 — C2×C22.F5
C1C22C23

Generators and relations for C2×C22.F5
 G = < a,b,c,d,e | a2=b2=c2=d5=1, e4=c, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d3 >

Subgroups: 164 in 68 conjugacy classes, 38 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C23, C10, C10, C10, C2×C8, M4(2), C22×C4, Dic5, Dic5, C2×C10, C2×C10, C2×C10, C2×M4(2), C5⋊C8, C2×Dic5, C2×Dic5, C22×C10, C2×C5⋊C8, C22.F5, C22×Dic5, C2×C22.F5
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, F5, C2×M4(2), C2×F5, C22.F5, C22×F5, C2×C22.F5

Character table of C2×C22.F5

 class 12A2B2C2D2E4A4B4C4D4E4F58A8B8C8D8E8F8G8H10A10B10C10D10E10F10G
 size 11112255551010410101010101010104444444
ρ11111111111111111111111111111    trivial
ρ21111-1-11111-1-11-111-1-111-1-11-1-11-11    linear of order 2
ρ31-1-11-11-11-111-11111-1-1-1-11-1-111-1-11    linear of order 2
ρ41-1-111-1-11-11-111-11111-1-1-11-1-1-1-111    linear of order 2
ρ51111-1-11111-1-111-1-111-1-11-11-1-11-11    linear of order 2
ρ61111111111111-1-1-1-1-1-1-1-11111111    linear of order 2
ρ71-1-11-11-11-111-11-1-1-11111-1-1-111-1-11    linear of order 2
ρ81-1-111-1-11-11-1111-1-1-1-11111-1-1-1-111    linear of order 2
ρ91-1-111-11-11-11-11-i-ii-iii-ii1-1-1-1-111    linear of order 4
ρ101-1-111-11-11-11-11ii-ii-i-ii-i1-1-1-1-111    linear of order 4
ρ111-1-11-111-11-1-111-ii-i-ii-iii-1-111-1-11    linear of order 4
ρ121-1-11-111-11-1-111i-iii-ii-i-i-1-111-1-11    linear of order 4
ρ13111111-1-1-1-1-1-11-ii-ii-ii-ii1111111    linear of order 4
ρ14111111-1-1-1-1-1-11i-ii-ii-ii-i1111111    linear of order 4
ρ151111-1-1-1-1-1-1111-i-iii-i-iii-11-1-11-11    linear of order 4
ρ161111-1-1-1-1-1-1111ii-i-iii-i-i-11-1-11-11    linear of order 4
ρ1722-2-2002i-2i-2i2i002000000000200-20-2    complex lifted from M4(2)
ρ182-22-200-2i-2i2i2i002000000000-20020-2    complex lifted from M4(2)
ρ192-22-2002i2i-2i-2i002000000000-20020-2    complex lifted from M4(2)
ρ2022-2-200-2i2i2i-2i002000000000200-20-2    complex lifted from M4(2)
ρ214444-4-4000000-1000000001-111-11-1    orthogonal lifted from C2×F5
ρ224-4-44-44000000-10000000011-1-111-1    orthogonal lifted from C2×F5
ρ234-4-444-4000000-100000000-11111-1-1    orthogonal lifted from C2×F5
ρ24444444000000-100000000-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ2544-4-400000000-1000000005-1-551-51    symplectic lifted from C22.F5, Schur index 2
ρ264-44-400000000-100000000-51-55-151    symplectic lifted from C22.F5, Schur index 2
ρ274-44-400000000-100000000515-5-1-51    symplectic lifted from C22.F5, Schur index 2
ρ2844-4-400000000-100000000-5-15-5151    symplectic lifted from C22.F5, Schur index 2

Smallest permutation representation of C2×C22.F5
On 80 points
Generators in S80
(1 68)(2 69)(3 70)(4 71)(5 72)(6 65)(7 66)(8 67)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)(25 74)(26 75)(27 76)(28 77)(29 78)(30 79)(31 80)(32 73)(33 48)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)(49 59)(50 60)(51 61)(52 62)(53 63)(54 64)(55 57)(56 58)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(25 29)(27 31)(34 38)(36 40)(41 45)(43 47)(50 54)(52 56)(58 62)(60 64)(65 69)(67 71)(74 78)(76 80)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)
(1 57 35 75 19)(2 76 58 20 36)(3 21 77 37 59)(4 38 22 60 78)(5 61 39 79 23)(6 80 62 24 40)(7 17 73 33 63)(8 34 18 64 74)(9 50 29 71 45)(10 72 51 46 30)(11 47 65 31 52)(12 32 48 53 66)(13 54 25 67 41)(14 68 55 42 26)(15 43 69 27 56)(16 28 44 49 70)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,68)(2,69)(3,70)(4,71)(5,72)(6,65)(7,66)(8,67)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,73)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(65,69)(67,71)(74,78)(76,80), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80), (1,57,35,75,19)(2,76,58,20,36)(3,21,77,37,59)(4,38,22,60,78)(5,61,39,79,23)(6,80,62,24,40)(7,17,73,33,63)(8,34,18,64,74)(9,50,29,71,45)(10,72,51,46,30)(11,47,65,31,52)(12,32,48,53,66)(13,54,25,67,41)(14,68,55,42,26)(15,43,69,27,56)(16,28,44,49,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,68)(2,69)(3,70)(4,71)(5,72)(6,65)(7,66)(8,67)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,73)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(65,69)(67,71)(74,78)(76,80), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80), (1,57,35,75,19)(2,76,58,20,36)(3,21,77,37,59)(4,38,22,60,78)(5,61,39,79,23)(6,80,62,24,40)(7,17,73,33,63)(8,34,18,64,74)(9,50,29,71,45)(10,72,51,46,30)(11,47,65,31,52)(12,32,48,53,66)(13,54,25,67,41)(14,68,55,42,26)(15,43,69,27,56)(16,28,44,49,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,68),(2,69),(3,70),(4,71),(5,72),(6,65),(7,66),(8,67),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21),(25,74),(26,75),(27,76),(28,77),(29,78),(30,79),(31,80),(32,73),(33,48),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47),(49,59),(50,60),(51,61),(52,62),(53,63),(54,64),(55,57),(56,58)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(25,29),(27,31),(34,38),(36,40),(41,45),(43,47),(50,54),(52,56),(58,62),(60,64),(65,69),(67,71),(74,78),(76,80)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80)], [(1,57,35,75,19),(2,76,58,20,36),(3,21,77,37,59),(4,38,22,60,78),(5,61,39,79,23),(6,80,62,24,40),(7,17,73,33,63),(8,34,18,64,74),(9,50,29,71,45),(10,72,51,46,30),(11,47,65,31,52),(12,32,48,53,66),(13,54,25,67,41),(14,68,55,42,26),(15,43,69,27,56),(16,28,44,49,70)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

C2×C22.F5 is a maximal subgroup of
C22⋊C4.F5  C22.F5⋊C4  Dic5.C42  D10⋊M4(2)  Dic5⋊M4(2)  C20⋊C8⋊C2  D109M4(2)  C208M4(2)  C5⋊C87D4  C202M4(2)  (C2×D4).7F5  (C2×D4).9F5  C24.4F5  Dic5.C24
C2×C22.F5 is a maximal quotient of
C20.34M4(2)  Dic5.13M4(2)  C208M4(2)  C20.30M4(2)  C5⋊C87D4  C202M4(2)  C20.6M4(2)  C24.4F5

Matrix representation of C2×C22.F5 in GL6(𝔽41)

4000000
0400000
001000
000100
000010
000001
,
100000
0400000
001000
000100
0000400
0000040
,
4000000
0400000
0040000
0004000
0000400
0000040
,
100000
010000
0040100
0033700
0000346
0000340
,
010000
900000
000010
000001
0002800
0019000

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,33,0,0,0,0,1,7,0,0,0,0,0,0,34,34,0,0,0,0,6,0],[0,9,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,19,0,0,0,0,28,0,0,0,1,0,0,0,0,0,0,1,0,0] >;

C2×C22.F5 in GAP, Magma, Sage, TeX

C_2\times C_2^2.F_5
% in TeX

G:=Group("C2xC2^2.F5");
// GroupNames label

G:=SmallGroup(160,211);
// by ID

G=gap.SmallGroup(160,211);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,362,69,2309,599]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^5=1,e^4=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

Export

Character table of C2×C22.F5 in TeX

׿
×
𝔽